
Analysing System Failure Behaviours With PRISM
Xiaocheng Ge, Richard F. Paige and John A. McDermid

Department of Computer Science, University of York, UK.
{xchge, paige, jam}@cs.york.ac.uk

Abstract—The verification of safety-critical systems using formal
techniques is not something new[15]. Traditionally, safety-critical
systems are verified using hazard analysis techniques, e.g., fault
tree analysis. As safety-critical systems have become larger and
more complex, several analysis techniques with compositional
capabilities were developed. However, these techniques were not
able to analyse stochastic systems. In this paper, we present a
model-based compositional safety analysis technique (i.e., failure
propagation analysis) and explore the feasibility of integrating
this safety analysis technique with techniques of probabilistic
model checking, more precisely the PRISM model checker. By
doing so, we make it possible to rigorously verify a model while
system failure behaviours are quantitatively analysed.
Index Terms—Component-based safety assessment, PRISM,
Model verification, Probabilistic analysis

I. INTRODUCTION

The failure of safety-critical systems may result in a tragic
loss of human life or property. Traditionally, safety-critical
systems are verified using hazard analysis techniques. Typical
techniques are Fault tree analysis (FTA) [2], Hazards and
operability analysis (HAZOP) [10], and Failure modes and
effects analysis (FMEA) [1]. Those techniques have been
successfully applied to real-world safety-critical systems for
many decades.
Safety-critical systems are becoming more and more complex,
which makes the development and analysis of these complex
systems more difficult. Component-based development has
emerged as a promising solution for developing complex
systems, via an approach of composing smaller, indepen-
dently developed components into larger assemblies. However
traditional hazard analysis techniques rely on a monolithic
decomposition of the system with regards to the hierarchy
of failure effects rather than on the system’s architectural
model; thus, they are inadequate to demonstrate effectiveness
at an architectural level, where compositional capability is
required. In order to improve the effectiveness of model-based
safety analysis, new compositional techniques were proposed
such as Failure Propagation Transformation Notation (FPTN)
[8], Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) [20], Component Fault Trees (CFT) [12],
and Fault Propagation and Transformation Calculus (FPTC)
[21].
A major limitation of all of these hazard analysis techniques
is that the analysis heavily relies on the experience and skills
of the analysts: a failure unknown to the analysts would not
be covered, thus hazards related to the failure are not foreseen.
The negative effects of the limitation are increasing as safety-
critical systems also increase in complexity. As a result,

there is a trend to use methods that are more automatic and
exhaustive than hazard analysis, for example model checking
[5], [11]. The verification of safety-critical systems using
formal techniques is not new [15]. The application of model
checking to safety-critical system verification can base on
various formal models for example Petri nets [16], finite state
machines [5], Statecharts [4], SCADE [7], and Altarica [4],
[3].
The work presented in this paper is based on our previous
work of FPTC [21], [19]. The major goal of our recent
work is to explore the feasibility of integrate model checking
techniques, more precisely probabilistic model checking, with
compositional safety analysis technique because there is little
research in this area so far. The contribution of this work
is to show how a probabilistic model checking tool, i.e.,
PRISM, can support failure propagation analysis (via the
FPTC approach of [21]), thus making it feasible to use hazard
analysis techniques for stochastic systems.
The paper is structured as follows: the first section will briefly
review applications of model checking to safety-critical sys-
tems and introduce the probabilistic model checker, PRISM1.
Then we will demonstrate the use of PRISM for safety
analysis; the demonstration is via example.

II. BACKGROUND

An overall objective of our research is to explore and inte-
grate model checking techniques with a compositional safety
analysis technique: FPTC. In this section, we first review
several compositional analysis techniques; then we describe
the application of model checking techniques to the safety
domain; and at the end, we introduce the probabilistic model
checker – PRISM – used in our research.

A. Compositional safety analysis techniques

Approaches to compositional safety analysis are all based on
the idea of carrying out safety analysis on an architectural
model of a system: the architectural model, besides capturing
components and connectors, encapsulates failure behaviour,
and expresses how incoming input failures of individual
components propagate or transform to their outgoing output
failures. Such approaches attempt to break down system-
level analysis and assessment into more manageable tasks,
applied to individual components, and a system model is then
produced by composing models of individual components. In
general, the composition of individual component models is

1http://www.prismmodelchecker.org/

2010 Fourth IEEE International Conference on Secure Software Integration and Reliability Improvement Companion

978-0-7695-4087-0/10 $26.00 © 2010 IEEE

DOI 10.1109/SSIRI-C.2010.32

130

carried out by connecting output failures of a component to
input failures of other components.
Failure Propagation and Transformation Notation (FPTN) [8]
was the first such approach to be developed. FPTN aims to
provide a simple notation to capture both system architecture
and the way in which failures within that architecture interact.
The Hierarchically Performed Hazard Origin and Propagation
Studies (HiP-HOPS) [20] method consists of three main
stages: functional failure analysis, component failure analy-
sis and fault tree synthesis. At the beginning of the HiP-
HOPS process, the system is decomposed into subsystems
and components that are abstractions of system functionality.
Then safety engineers use a modification of classical FMEA
– Interface-Focused FMEA (IF-FMEA) – to generate a model
of the local failure behaviour of components. Once the local
failure behaviour of all components are determined, fault trees
are constructed by exploiting the structure of the hierachical
model and information about failure behaviour of components
that is contained in IF-FMEAs. HiP-HOPS also introduced
the idea that a partial fault tree can be used to reflect the
failure logic of an actual component, and input and output
ports of different components can be glued together. This idea
was influential in developing other failure analysis techniques,
such as FPTC.
Similarly, [12] proposed a technique, called Component Fail-
ure Tree (CFT), which aims to help capture the failure logic
of a component as a function of input failures and internal
events. Components can be modelled independently and each
component constitutes a namespace and hides all internal
events from its environment so that CFTs can be archived
and reused in different projects.
Compared with FPTN, both HiP-HOPS and CFT are tool-
supported and automated safety assessment techniques. This
is important because it is needed for successful technology
transfer to industrial practise, since manually performed safety
analysis techniques are error-prone or even infeasible for
complex component-based systems.
A limitation of all of these methods is their inability to handle
cyclic data- and control-flow structures in the system architec-
ture. This is a major drawback of these techniques as many
real-world control systems contain closed feedback loops.
To overcome this limitation, two more recent approaches
have been proposed: AltaRica [3] and Fault Propagation and
Transformation Calculus (FPTC) [21].
The AltaRica language was a product of the ESACS (En-
hanced Safety Assessment for Complex System) European
project, which aimed to invested new safety techniques based
on the use of formal design languages and associated tools.
One of the advantages of using AltaRica is its supporting
tools. A model expressed in the AltaRica language can be
validated by graphical interactive simulation and symbolic
model checking. It has been successfully applied to many
industrial case studies.
FPTC is a compositional failure analysis technique, which
solves the problem of cyclic dependencies in a failure propa-
gation model by using fixed-point evaluation techniques. The

calculus is supported by a tool implemented in a number
of domain-specific languages (in this sense, the approach is
similar to AltaRica) [19]. FPTC has been applied in several
industrial case studies, including analysis of failure modes in
engine controllers, and for FPGA-based systems.
¿From a high-level viewpoint, these compositional techniques
have a similar conceptual foundation that components and
failure mode flows in failure behaviour model correspond to
the components and their connections in the system design.
Differences can be identified in the representation (graphical
or textual), tool and methodological support.

B. Model Checking in safety domain and PRISM

Model checking [6] is a collection of techniques for auto-
matically analysing reactive systems [9], [17]. The inputs to
a model checker are a (usually finite state) description of
the system to be analysed and a number of properties, often
expressed as formulae of temporal logic; these properties are
expected to hold of the system. The model checker can confirm
that the properties hold, or may report that they are violated,
or may be unable to produce a response in a timely manner
(due to restrictions on available computational resources).
The verification of safety-critical systems using formal tech-
niques is not new [15]. The application of model checking to
safety-critical system verification has been based on various
formal models, e.g., Petri nets [16], finite state machines [5],
Statecharts [4], SCADE [7], and Altarica [4], [3].
Formal verification techniques, and in particular model check-
ing, offer a powerful and rigorous approach for establishing
the truth of curtain properties of a complex system. We choose
to use PRISM [13], [14] because it is a sound and powerful
probabilistic model checker which is well-suited to the purpose
of analysing stochastic systems. In the case of probabilistic
model checking, models are typical variants of Markov chain,
in the sense that they encode the probability of making a
transition between states instead of simply expressing the
existence of a transition. Probabilistic model checking is an
automatic procedure for establishing if a desired property
holds in a probabilistic system model. PRISM requires two
inputs:

• a description of the system to be analysed, typically given
in some high-level modelling language;

• a formal specification of quantitative properties of the
system that are to be analysed, usually expressed in
variants of temporal logic.

The first input is a probabilistic variant of a state-transition
model: each state represents a possible configuration of the
system modelled: and each transition represents a possible
evolution of the system from one configuration to another over
time. Transitions are labelled with quantitative information
regarding the probability and/or timing of the transition’s
occurrence.
A PRISM model comprises a set of modules which represent
different components of the system being modelled. The state
of each module is defined by a set of finite-ranging variables.
The behaviour of a module, i.e., the changes to its state that

131

can occur, is specified by a set of guarded commands. These
commands take the form:

[syn] guard − > probability : update;

where syn is an (optional) synchronisation label, guard is
a predicate over the variables of the model, probability is
a (non-negative) real-valued expression and update is update
state of local variables.
The value of using PRISM is that (i) the PRISM model checker
can be used to help to verify the system model; (ii) the tool
can calculate the probability that a certain event occurs so that
this functionality is used to predict the likelihood of the failure
event; and (iii) the language of PRISM has a modular structure,
thus making it easier to see how to apply the approach to
larger, more complex problems. For our particular setting, the
modular structure of the PRISM language makes it easier to
integrate with compositional safety analysis techniques, which
are inherently decompositional.

C. Framework for model-based safety analysis

We propose to combine the use of compositional safety
analysis and model checking to support safety analysis.
Several compositional safety analysis techniques were briefly
reviewed in the previous section. All these techniques are
based on a de facto standard analysis process. In practice,
the development of a software architecture is an iterative
process from an intermediate model to a complete and rig-
orous solution. To provide effective feedback to the modelling
process, the safety assessment should be performed paralleled
with modelling process. An iteration of the modelling process
consists of four basic stages. The first phase is functionality-
based architectural design, which is the process of designing
a domain model based on the functional requirements only.
The second phase is architectural transformation. Software
architecture is constructed for the purpose of functionality.
It represents the processing units of the system and the
interactions between them. Safety assessment is based on a
model which represents the failure logic (flow) of the system.
The failure logic model is closely related to that of the software
architecture, but they may not be same at all times. During the
second phase, the architectural model is transformed to the
failure logic model so that safety analysis can start. The third
phase is architecture assessment. During this stage, the soft-
ware architecture is evaluated with respect to safety concerns.
Finally, architecture refinement is the stage in which system
developers consider the improvements of the architecture by
introducing protective mechanisms in the architecture, or by
converting a safety requirement to a functional requirement
and then re-modelling.
A software architecture may use different notations for dif-
ferent views to support different purposes. An architecture
be described in terms of a module view, component-and-
connector (C&C) view, and allocation view. Our focus is the
failures and their propagation in the system. They are run-
time properties of the system. So C&C and allocation views

Architecture

of Functionality

Architecture

Assessment

Architecture

Refinement

to next iteration

Architecture

Transformation

Fig. 1. Iterative Development Process of Safety-critical Systems

are essential for gaining a clear picture of the failure behaviour
of a system.

III. FAILURE BEHAVIOUR MODELLING

In our study, a system is an entity that interacts with other enti-
ties, i.e., other systems – including hardware/software systems,
humans, and the physical world with its natural phenomena.
From an architectural point of view, a system is composed
of a set of components bound together in order to interact;
each component can be another system. This recursion stops
when a component is considered to be atomic: any further
internal architecture cannot be discerned, or is not of interest
and can be ignored. To avoid confusion, the term target system
(abbreviated as system) in this paper refers to the top-level,
whole system, instead any subsystems or modules are called
components. In general, a component is an abstraction of a
principal processing unit. It consists of interfaces which are
ports to communicate with others, and a “body” embedded
a logical function which may vary for different purposed of
modelling. The two catagories of ports, input ports and output
ports, are always distinguished for purposes of the design and
analysis. To deliver function, components are connected via a
connector which is a model of interaction or communication
mechanism between components.
A service delivered by a system is one of its functions. Correct
service is delivered when the service implements its system
specification. A service failure is an event that occurs when
the delivered service deviated from correct service.
The failure of a component is an event during run-time.
Mode is a general term to describe the manner by which
a behaviour of a component is observed. A component is
designed and expected to behave normally. The default mode
of a component is its non-failure model, which is usually
tagged as normal.
Components are connected (interact) with others in the system.
Inputs of a component can be the stimuli of the abnormal
behaviours of the component. When a component receives
(normal or abnormal) inputs, it can introduce failures (e.g.,
because of an exception or crash), or may propagate failures
(e.g., data that is erroneous when it arrives at the component

132

remains erroneous when it leaves), or transforms a failure into
a different kind of failure (e.g., data that arrives late may
propagate as a value failure). Furthermore, a component may
correct or mask failures that it receives. At each time, only one
mode can be propagated or transformed by the component. But
statistically, a component can have many failure modes, which
describes the way the failure occurs. Thus when a component
receives inputs of a particular failure mode, it will generate
one of the following responses.

output =

normal
same failure
different failure

A failure means that at least one (or more) external state of
the component deviates from the correct (specified) state. The
deviation from correct state may assume different forms which
are called failure modes. Failure modes of a component can
be identified and classified using a set of keywords such as
those from SHARD [18].

S.normal S.failure
p

Fig. 2. Transition of Failure

A failure can be seen as a transition from correct service
to incorrect service. In Figure 2, p represents the probability
that a component transforms from normal state to a failure
state. In addition, a component can fail to many failure state.
Therefore the transition from normal state can be arbitrary
too.
One key concern in failure modelling is its expressive power
with regards to describing failure behaviour of a component.
The behaviour of a component is always recorded by its
external states, i.e, the states of its outputs. However, because
failure stimuli may arise in the external environment, or
inside a software or hardware component in the system, the
information of the state of component’s inputs are also needed
to describe the failure behaviours. In addition, the failure
behaviour can be modelled by making the occurrence of failure
event a deterministic choice or non-deterministic choice. The
decision regarding the choice between determinism and non-
determinism depends on the degree of the knowledge about
the failure behaviour of a component. The non-determinism is
not a feature of software system but can be one of specification
at a higher level of abstraction due to incomplete knowledge
about system behaviour. Above all, the failure behaviour of a
component is expressed in the following format:

input state − > output state, probability

In the expression, the probability is conditional, i.e., the
probability of an event that the output of a component in a
certain state given the condition of a particular input.

IV. FAILURE BEHAVIOUR MODEL IN PRISM WITH
EXAMPLE

The previous section discussed how a failure behaviour is
modelled. We will demonstrate how to model a component
in PRISM in this section. Our example is a processor. Typical
failure behaviours of a processor can be: crash failure (i.e.,
permanent omission failure), transient timing failure, transient
value failure. The model of the processor is illustrated in
Figure 3.

S0

S1

S2

S3

1

1

1

x y

z

1-x-y-z

Fig. 3. Model of a Processor

In the model, s0 are the initial state of the processor (we
assume it is a normal state), and s1, s2, s3 donates the state
of the processor in failure mode of crash failure, timing failure
and value failure. We did not claim the probability values for
the transitions from the initial state to various failure state
in the model (i.e., x, y, and z in the Figure 3) and we will
demonstrate the reason later in this paper.
The behaviours of the processor can be expressed as follow-
ings:

normal − > crash, x

normal − > timing, y

timing − > normal, 1

normal − > value, z

value − > normal, 1

The processor can be defined as a module in the PRISM model.
The following is the PRISM model.

p r o b a b i l i s t i c

module p r o c e s s o r
s : [0 . . 2] i n i t 0 ;
i n : [0 . . 2] i n i t 0 ;
o u t : [0 . . 4] i n i t 0 ;

[] i n =0 −> (in ’ = 1) ;

[] s =0 & i n =1 −>
(1−x−y−z) : (out ’ = 1) & (s ’ = 1)
+ x : (out ’ = 2) & (s ’ = 1)
+ y : (out ’ = 3) & (s ’ = 1)

+ z : (out ’ = 4) & (s ’ = 1) ;

133

[] s =1 & o u t =3 −> (in ’ = 0) & (s ’ = 0) ;
[] s =1 & o u t =4 −> (in ’ = 0) & (s ’ = 0) ;

endmodule

In this PRISM model, we used three state variables: s, in,
and out — s represents the state of a component, which can
be either 0 which indicates initial state of a component, or
1 that the component is processing data, or 2 that the output
is ready; in represents the modes of input where 0 is normal
and 1 is abnormal; and out is the state of output where there
are four modes, normal, omission, timing failure, and
value failure. Both input and output have an initial mode
which is normal.
Actually, the state machine model of the processor (Figure 3)
can be transformed into different PRISM models with different
structure. We choose such a structure with separate concept
of in/output because it is a compositional structure. The
advantage of the PRISM model with this in/output structure
will become obvious when the system model is constructed.

V. COMPOSITIONAL FAILURE MODELLING

In a compositional failure analysis approach, the system is
constructed by connecting models of individual components.
The tokens of failure mode flow from the output of a compo-
nent to the input of another component. PRISM itself has a
modular structure. Each module in a PRISM can be the model
of a individual component. The problem of compositional
system analysis becomes to the problem of how each module
can be easily connected. In our PRISM model, the state of
input and output has already been separated so that it is
easy to build a system failure behaviour model by assigning
the mode of the output of a component to the input of
another component. In addition, the state of a component and
the synchronisation mechanism of PRISM are also important
features when building the system model.
Given the example of Triple modular redundancy (TMR), we
will show how system is analysed in a compositional fashion
in PRISM. Figure 4 shows the architecture of TMR2.

processor1

processor2

processor3

voter

Fig. 4. Architecture of TMR

The system is a discrete-time Markov model. How to model
the state machine of the system is not our focus. We listed our
PRISM model in following:

2Due to the simplicity of the example, the failure model is as same as its
architecture.

p r o b a b i l i s t i c

c o n s t d ou b l e x ;
c o n s t d ou b l e y ;
c o n s t d ou b l e z ;

module p r o c e s s o r 1

s1 : [0 . . 2] i n i t 0 ;
i n 1 : [0 . . 2] i n i t 0 ;
ou t1 : [0 . . 4] i n i t 0 ;

[a] i n 1 =0 −> (in1 ’ = 1) & (s1 ’ = 1) ;

[] s1 =1 & i n 1 =1 −>
(1−x−y−z) : (out1 ’ = 1) & (s1 ’ = 2)
+ x : (out1 ’ = 2) & (s1 ’ = 2)
+ y : (out1 ’ = 3) & (s1 ’ = 2)
+ z : (out1 ’ = 4) & (s1 ’ = 2) ;

endmodule

module p r o c e s s o r 2

s2 : [0 . . 2] i n i t 0 ;
i n 2 : [0 . . 2] i n i t 0 ;
ou t2 : [0 . . 4] i n i t 0 ;

[a] i n 2 =0 −> (in2 ’ = 1) & (s2 ’ = 1) ;

[] s2 =1 & i n 2 =1 −>
(1−x−y−z) : (out2 ’ = 1) & (s2 ’ = 2)
+ x : (out2 ’ = 2) & (s2 ’ = 2)
+ y : (out2 ’ = 3) & (s2 ’ = 2)
+ z : (out2 ’ = 4) & (s2 ’ = 2) ;

endmodule

module p r o c e s s o r 3

s3 : [0 . . 2] i n i t 0 ;
i n 3 : [0 . . 2] i n i t 0 ;
ou t3 : [0 . . 4] i n i t 0 ;

[a] i n 3 =0 −> (in3 ’ = 1) & (s3 ’ = 1) ;

[] s3 =1 & i n 3 =1 −>
(1−x−y−z) : (out3 ’ = 1) & (s3 ’ = 2)
+ x : (out3 ’ = 2) & (s3 ’ = 2)
+ y : (out3 ’ = 3) & (s3 ’ = 2)
+ z : (out3 ’ = 4) & (s3 ’ = 2) ;

endmodule

module v o t e r

v : [0 . . 2] i n i t 0 ;
i nv1 : [0 . . 4] i n i t 0 ;
i nv2 : [0 . . 4] i n i t 0 ;
i nv3 : [0 . . 4] i n i t 0 ;
ou tv : [0 . . 2] i n i t 0 ;

[] v=0 & s1 =2 & s2 =2 & s3 =2 −>
(inv1 ’= ou t1) & (inv2 ’= ou t2)
& (inv3 ’= ou t3) & (v ’ = 1) ;

[] v=1 & ((inv1 =1 & inv2 =1) |

134

(i n v1 =1 & inv3 =1) |
(i n v2 =1 & inv3 = 1))
−> (outv ’ = 1) & (v ’ = 2) ;

[] v=1 &
((i nv1 !=1 & inv2 !=1 & inv3 ! = 1)
−> (outv ’ = 2) & (v ’ = 2) ;

endmodule

In this modular model, we used a module to model each
component and connected each module by our proposed
in/output mechanism. The PRISM model of TMR example
illustrates that constructing a system model is easier if every
component is modelled in a modular structure (discussed in
previous section). Considering the execution sequence of the
components, the only thing to do when connecting components
is to ensure that the component get the inputs when the outputs
of previous component are ready.

VI. SYSTEM ASSESSMENT

The safety assessment is based on the failure model trans-
formed from the architecture. In the failure model, components
are treated that they may have various failure behaviours and
links only propagate the failure from an output of a component
to the input of another component.
As a probabilistic model checker, PRISM firstly can help us
verify our probabilistic system model once it is built, which is
so important if the system model is too complex to be checked
manually.
In addition, sensitivity analysis is some times desired in
system analysis. PRISM provides an ability to run a serial
of experiments with variables which makes the sensitivity
analysis easier.
In the example, we can examine the effect of the crash rate of
processors by adding an experiment in PRISM. Figure 5 is the
analysis result which can be used as a component selection
criterion. The curve in Figure 5 shows the relationship of
crash failure rate of processors and the probability of TMR
working normally, given the rate of timing and value failures
of processors are both 0.1.

Fig. 5. Result of Probabilistic Analysis

The example demonstrates the use of PRISM in our failure
behaviour analysis. In the application of our failure analysis
technique with PRISM, some lessons are learned. In next
section, we briefly evaluate our work.

VII. EVALUATION

The key to the effectiveness of safety analysis should lie in at
least the following five aspects:

1) an underlying formal model where imprecision and
ambiguity can be avoided;

2) compositional capabilities which determines safety prop-
erties of a system by composition of its components;

3) a systems modelling approach where hardware, software
and environment components can be modelled in a
unified or integrated model;

4) sufficient expressive power to capture failures in a
straightforward manner;

5) automation support to enable safety analysis to repeated
with minimal effort.

Consider those criteria of compositional safety analysis tech-
niques, our technique with the help of PRISM is based on
a mathematical model and can be systematically verified by
the model checker. By introducing probability, the expres-
sive power of the technique has been enhanced. Failures of
hardware and software components are easily modelled in the
technique. From another angle, our work demonstrates that
probabilistic model checker can be used to improve the failure
propagation analysis.
There is not yet sufficient project experience to judge the
practicability of our approach. However, early experience
suggests that it is relatively easy to produce the required failure
model and assessment, and that some re-use of the model is
possible. The technique, therefore, can give economic benefits,
as same time as improve the effectiveness of safety assessment.
However, there are many areas for future improvement, for
instance, the implementation of the tool which makes the
model checking techniques more integrated in safety analysis
process.

VIII. CONCLUSIONS

We have presented a model-based technique for analysing the
failure propagation model of a system. The proposed technique
enables the assessment of failure propagation from the analysis
of components to the system. It integrates the system de-
velopment (specifically, the development of component-based
system) and safety analysis, and in the process of assessment,
works on a hierarchical architecture of the system so that it
can ensure the system model is consistent.
We are now extending our technique to enable analysis of not
only probabilistic failure models, but also timed probabilistic
failure models.

REFERENCES

[1] IEC 60812. Functional safety of electrocal/electronical/programmable
electronic safety/related systems, analysis techniques for system reliabil-
ity - procedure for failure mode and effect analysis (FMEA). Technical
report, International Electrotechnical Commission (IEC), 1991.

[2] IEC 61025. Fault-tree analysis (FTA). Technical report, International
Electrotechnical Commission (IEC), 1990.

135

[3] Pierre Bieber, Christian Bougnol, Charles Castel, Jean pierre Heckmann,
Christophe Kehren, Sylvain Metge, Christel Seguin, P. Bieber, C. Boug-
nol, C. Castel, J. p. Heckmann, C. Kehren, and C. Seguin. Safety
assessment with altarica - lessons learnt based on two aircraft system
studies. In In 18th IFIP World Computer Congress, Topical Day on New
Methods for Avionics Certification, page 26, 2004.

[4] M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita.
Improving safety assessment of complex systems: An industrial case
study. In Proceedings of International Formal Methods European
Symposium, pages 208–222, 2003.

[5] M. Bozzano and A. Villafiorita. Improving system reliability via model
checking: The FSAP/NuSMV-SA safety analysis platform. In Proceed-
ings of International Confenerence of Computer Safety, Reliability and
Security, 2003.

[6] E.M Clarke. Model Checking. MIT Press, 1999.
[7] J. Deneux and O. Akerlund. A common framework for design and

safety analysis using formal methods. In Proceedings of International
Conference of Probabilistic Safety Assurance and Management (PSAM)
and European Safety and Reliability Conference, 2004.

[8] Peter Fenelon and John A. McDermid. An integrated toolset for software
safety analysis. The Journal of Systems and Software, 21(3):279–290,
June 1993.

[9] David Harel and Amir Pnueli. On the development of reactive systems.
Logics and Models of Concurrent Systems, F13:477–498, 1985.

[10] IEC. Hazard and operability studies (HAZOP studies) - application
guide. Technical report, International Electrotechnical Commission
(IEC), 2000.

[11] J. Jacky. Formal safety analysis of the control program for a radiation
theraphy machine. In proceedings of 13th International Conference of
Use of Computers in Radiation Theraphy, 2000.

[12] Bernhard Kaiser, Peter Liggesmeyer, and Oliver Mäckel. A new
component concept for fault trees. In In the proceedings of the 8th
Australian Workshop on Safety Critical Systems and Software (SCS’03),
2003.

[13] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM:
Probabilistic symbolic model checker. In in the proceedings of Computer
Performance Evaluation, 12th International Conference of Modelling
Techniques and Tools, TOOLS 2002, volume 2324 of LNCS, pages 200–
204, London, UK, April 2002. Springer.

[14] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Stochastic
model checking. In In proceedings of 7th International School on Formal
Methods for the Design of Computer, Communication, and Software
Systems, SFM 2007, volume 4486 of LNCS, Bertinoro, Italy, May 2007.
Springer.

[15] Nancy G. Levenson. Safeware: System Safety and Computers. Addison-
Wesley, 1995.

[16] Nancy G. Levenson and Janice L. stolzy. Safety analysis using petri nets.
IEEE Transactions of Software Engineering, SE-13:386–397, 1987.

[17] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems — Specification. Springer-Verlag, New York, 1992.

[18] J. McDermid, M. Nicholson, D. Pumfrey, and P. Fenelon. Experience
with the application of HAZOP to computer-based systems. In Compass
’95: 10th Annual Conference on Computer Assurance, pages 37–48,
Gaithersburg, Maryland, 1995. National Institute of Standards and
Technology.

[19] Richard F. Paige, Louis M. Rose, Xiaocheng Ge, Dimitrios S. Kolovos,
and Phillip J. Brooke. Automated safety analysis for domain-specific
languages. In In proceedings of Workshop on Non-Functional System
Properties in Domain Specific Modeling Languages, co-located with
11th International Conference of Model Driven Engineering Languages
and Systems, MoDELS 2008, volume 5421 of LNCS, Toulouse, France,
October 2008. Springer.

[20] Yiannis Papadopoulos, John A. McDermid, Ralph Sasse, and Guenter
Heiner. Analysis and synthesis of the behaviour of complex pro-
grammable electronic systems in conditions of failure. Reliability
Engineering and System Safety, 71:229–247, 2001.

[21] Malcolm Wallace. Modular architectural representation and analysis of
fault propagation and transformation. Electronic Notes in Theoretical
Computer Science, 141(3):53–71, 2005.

136

