
Speed Scaling to Manage Temperature

Leon Atkins1, Guillaume Aupy2, Daniel Cole3, and Kirk Pruhs4,?

1 Department of Computer Science, University of Bristol, atkins@cs.bris.ac.uk
2 Computer Science Department, ENS Lyon, guillaume.aupy@ens-lyon.fr

3 Computer Science Department, University of Pittsburgh, dcc20@cs.pitt.edu
4 Computer Science Department, University of Pittsburgh, kirk@cs.pitt.edu

Abstract. We consider the speed scaling problem where the quality of
service objective is deadline feasibility and the power objective is tem-
perature. In the case of batched jobs, we give a simple algorithm to com-
pute the optimal schedule. For general instances, we give a new online
algorithm, and obtain an upper bound on the competitive ratio of this
algorithm that is an order of magnitude better than the best previously
known bound upper bound on the competitive ratio for this problem.

1 Introduction

Speed scaling technology allows the clock speed and/or voltage on a chip to be
lowered so that the device runs slower and uses less power [1]. Current desktop,
server, laptop, and mobile class processors from the major manufacturers such
as AMD and Intel incorporate speed scaling technology. Further these manu-
facturers produce associated software, such as AMD’s PowerNow and Intel’s
SpeedStep, to manage this technology. With this technology, the operating sys-
tem needs both a scheduling policy to determine which job to run at each point
in time, as well as a speed scaling policy to determine the speed of the processor
at that time. The resulting optimization problems have dual objectives, a quality
of service objective (e.g. how long jobs have to wait to be completed), as well
as a power related objective (e.g. minimizing energy or minimizing maximum
temperature). These objectives tend to be in opposition as the more power that
is used, generally the better the quality of service that can be provided.

The theoretical study of such dual objective scheduling and speed scaling
optimization problems was initiated in [2]. [2] studied the problem where the
quality of service objective was a deadline feasibility constraint, that is, each
job has to be finished by a specified deadline, and the power objective was to
minimize to total energy used. Since [2] there have been a few tens of speed
scaling papers in the theoretical computer science literature [3] (and probably
hundreds of papers in the general computer science literature). Almost all of
the theoretical speed scaling papers have focused on energy management. We
believe that the main reason for the focus on energy, instead of temperature,

? Kirk Pruhs was supported in part by NSF grant CCF-0830558, and an IBM Faculty
Award.

is mathematical; it seems to be much easier to reason about the mathematical
properties of energy than it is to reason about the mathematical properties of
temperature. From a technological perspective, temperature management is at
least on par with energy management in terms of practical importance.

Energy and temperature are intuitively positively correlated. That is, running
at a high power generally leads to both high temperatures and high energy
use. It is therefore tempting to presume that a good energy management policy
will also be a good temperature management policy. Unfortunately, the first
theoretical paper on speed scaling for temperature management [4] showed that
some algorithms that were proved to be good for energy management in [2], can
be quite bad for temperature management. The reason for this is the somewhat
subtle difference between energy and temperature.

To understand this, we need to quickly review the relationship between speed,
power, and energy. The well-known cube-root for CMOS-based processor states
that the dynamic power used by a processor is roughly proportional to the
speed of the processor cubed [5]. Energy is power integrated over time. Cooling
is a complex phenomenon that is difficult to model accurately. [4] suggested
assuming that all heat is lost via conduction, and that the ambient temperature
is constant. This is a not completely unrealistic assumption, as the purpose of
fans within computers is to remove heat via conduction, and the purpose of
air conditioning is to maintain a constant ambient temperature. Newton’s law
of cooling states that the rate of cooling is proportional to the difference in
temperature between the device and the ambient environment. This gives rise
to the following differential equation describing the temperature T of a device
as a function of time t:

dT (t)
dt

= aP (t)− bT (t) (1)

That is the rate of increase in temperature is proportional to the power P (t)
used by the device at time t, and the rate of decrease in temperature due to
cooling is proportional to the temperature (assuming that the temperature scale
is translated so the ambient temperature is zero). It can be assumed without
loss of generality that a = 1. The device specific constant b, called the cooling
parameter, describes how easily the device loses heat through conduction [4]. For
example, all else being equal, the cooling parameter would be higher for devices
with high surface area than for devices with low surface area. [4] showed that
the maximum temperature that a device reaches is approximately the maximum
energy used over any time period of length 1/b. So a schedule that for some
period of time of length 1/b used an excessive amount of power could still be a
near optimal schedule in terms of energy (if the aggregate energy used during
this time interval is small relative to the total energy used) but might reach a
much higher temperature than is necessary to achieve a certain quality of service.

In this paper we consider some algorithmic speed scaling problems where the
power objective is temperature management. Our high level goal is to develop
techniques and insights that allow mathematical researchers to more cleanly and
effective reason about temperature in the context of optimization.

We adopt much of the framework considered in [2] and [4], which we now
review, along with the most closely related results in the literature.

Preliminaries We assume that a processor running at a speed s consumes power
P (s) = sα, where α > 1 is some constant. We assume that the processor can
run at any nonnegative real speed (using techniques in the literature, similar
results could be obtained if one assumed a bounded speed processor or a finite
number of speeds). The job environment consists of a collection of tasks, where
each task i has an associated release time ri, amount of work pi, and a deadline
di. A online scheduler does not learn about task i until time ri, at which point
it also learns the associated pi and di. A schedule specifies for each time, a job
to run, and a speed for the processor. The processor will complete s units of
work in each time step when running at speed s. Preemption is allowed, which
means that the processor is able to switch which job it is working on at any
point without penalty. The deadline feasibility constraints are that all of the
work on a job must be completed after its release time and before its deadline.
[2] and subsequent follow-up papers consider the online and offline problems of
minimizing energy usage subject to these deadline feasibility constraints. Like
[4], we will consider the online and offline problems of minimizing the maximum
temperature, subject to deadline feasibility constraints.

Related Results [2] showed that there is a greedy offline algorithm YDS to com-
pute the energy optimal schedule. A naive YDS implementation runs in time
O(n3), which is improved in [6] to O(n2 log n). [2] suggested two online algo-
rithms OA and AVR. OA runs at the optimal speed assuming no more jobs
arrive in the future (or alternately plans to run in the future according to the
YDS schedule). AVR runs each job at an even rate between its release time and
deadline. In a complicated analysis, [2] showed that AVR is at most 2α−1αα-
competitive with respect to energy. A simpler competitive analysis of AVR, with
the same bound, as well as a nearly matching lower bound on the competitive
ratio for AVR can be found in [7]. [4] shows that OA is αα-competitive with
respect to energy. [4] showed how potential functions can be used to give rela-
tively simple analyses of the energy used by an online algorithm. [8] introduces
an online algorithm qOA, which runs at a constant factor q faster than OA, and
shows that qOA is at most 4α/(2

√
eα)-competitive with respect to energy. When

the cube root rule holds, qOA has the best known competitive ratio with respect
to energy, namely 6.7. [8] also gives the best known general lower bound on the
competitive ratio, for energy, of deterministic algorithms, namely eα−1/α.

Turning to temperature, [4] showed that a temperature optimal schedule
could be computed in polynomial time using the Ellipsoid algorithm. Note that
this is much more complicated than the simple greedy algorithm, YDS, for com-
puting an energy optimal schedule. [4] introduces an online algorithm, BKP, that
is simultaneously O(1)-competitive for both total energy and maximum temper-
ature. An algorithm that is c-competitive with respect to temperature has the
property that if the thermal threshold Tmax of the device is exceeded, then it
is not possible to feasibly schedule the jobs on a device with thermal threshold

Tmax/c. [4] also showed that the online algorithms OA and AVR, both O(1)-
competitive with respect to energy, are not O(1)-competitive for the objective of
minimizing the maximum temperature. In contrast, [4] showed that the energy
optimal YDS schedule is O(1)-competitive for maximum temperature.

Besides [4], the only other theoretical speed scaling for temperature manage-
ment papers that we are aware of are [9] and [12]. In [9] it is assumed that the
speed scaling policy is fixed to be: if a particular thermal threshold is exceeded
then the speed of the processor is scaled down by a constant factor. Presum-
ably chips would have such a policy implemented in hardware for reasons of
self-preservation. The paper then considers the problem of how to schedule unit
work tasks, that generate varying amounts of heat, so as to maximize through-
put. [9] shows that the offline problem is NP-hard even if all jobs are released at
time 0, and gives a 2-competitive online algorithm. [12] provides an optimal algo-
rithm for a batched release problem similar to ours but with a different objective,
minimizing the makespan, and a fundamentally different thermal model.

Surveys on speed scaling can be found in [3], [10], and [11].

Our Results A common online scheduling heuristic is to partition jobs into
batches as they arrive. Jobs that arrive, while jobs in the previous batch are
being run, are collected in a new batch. When all jobs in the previous batch
are completed, a schedule for the new batched is computed and executed. We
consider the problem of how to schedule the jobs in a batch. So this batched
problem is a special case of the general problem where all release times are zero.

In section 2.1, we consider the feasibility version of this batched problem.
That is, the input contains a thermal threshold Tmax and the problem is to
determine whether the jobs can be scheduled without violating deadlines or the
thermal threshold. We give a relatively simple O(n2) time algorithm. This shows
that temperature optimal schedules are easier to compute in the case of batched
jobs. Our algorithm maintains the invariant that after the ith iteration, it has
computed a schedule Si that completes the most work possible subject to the
constraints that the first i deadlines are met and the temperature never exceeds
Tmax. The main insight is that when extending Si to Si+1, one need only consider
n possibilities, where each possibility corresponds to increasing the speed from
immediately after one deadline before di until di in a particular way.

In section 2.2, we consider the optimization version of the batched problem.
That is, the goal is to find a deadline feasible schedule that minimizes the max-
imum temperature Tmax attained. One obvious way to obtain an algorithm for
this optimization problem would be to use the feasibility algorithm as a black
box, and binary search over the possible maximum temperatures. This would re-
sult in an algorithm with running time O(n2 log Tmax). Instead we give an O(n2)
time algorithm that in some sense mimics one run of the feasibility algorithm,
raising Tmax throughout so that it is always the minimum temperature necessary
to maintain feasibility.

We then move on to dealing with the general online setting. We assume that
the online speed scaling algorithm knows the thermal threshold Tmax of the
device. It is perfectly reasonable that an operating system would have knowl-

edge of the thermal threshold of the device on which it is scheduling tasks. In
section 3, we give an online algorithm A that runs at a constant speed (that
is a function of the known thermal threshold) until an emergency arises, that
is, it is determined that some job is in danger of missing its deadline. The
speed in the non-emergency time is set so that in the limit the temperature
of the device is at most a constant fraction of the thermal threshold. When
an emergency is detected, the online algorithm A switches to using the OA
speed scaling algorithm, which is guaranteed to finish all jobs by their deadline.
When no unfinished jobs are in danger of missing a deadline, the speed scal-
ing algorithm A switches from OA back to the nonemergency constant speed
policy. We show that A is e

e−1 (` + 3eαα))-competitive for temperature, where
` = (2− (α− 1) ln (α/(α− 1)))α ≤ 2. When the cube-root rule holds, this gives
a competitive ratio of around 350. That is, the job instance can not be feasibly
scheduled on a processor with thermal threshold Tmax/350. This compares to
the previous competitive ratio of BKP when α = 3 of around 6830. The insight
that allowed for a better competitive ratio was that it is only necessary to run
faster than this constant speed for brief periods of time, of length proportional
to the inverse of the cooling parameter. By analyzing these emergency and none-
mergency periods separately, we obtain a better bound on the competitive ratio
than what was obtained in [4].

In section 4 we also show, using the same analysis as for A, a slightly improved
bound on the temperature competitiveness of the energy optimal YDS schedule.

2 Batched Release

In this section, we consider the special case of the problem where all jobs are
released at time 0. Instead of considering the input as consisting of individual
jobs, each with a unique deadline and work, we consider the input as a series
of deadlines, each with a cumulative work requirement equal to the sum of the
work of all jobs due at or before that deadline. Formally, the input consists of
n deadlines, and for each deadline di, there is a cumulative work requirement,
wi =

∑i
j=1 pj , that must be completed by time di. With this definition, we then

consider testing the feasibility of some schedule S with constraints of the from
W (S, di) ≥ wi where W (S, di) is the total work of S by time di. We call these the
work constraints. We also have the temperature constraint that the temperature
in S must never exceed Tmax. Without loss of generality, we assume that the
scheduling policy is to always run the unfinished job with the earliest deadline.
Thus, to specify a schedule, it is sufficient to specify the processor speed at
each point in time. Alternatively, one can specify a schedule by specifying the
cumulative work processed at each point of time (since the speed is the rate of
change of cumulative work processed), or one could specify a schedule by giving
the temperature at this point of time (since the speed can be determined from
the temperature using Newton’s law and the power function).

Before beginning with our analysis it is necessary to briefly summarize the
equations describing the maximum work possible over an interval of time, sub-

ject to fixed starting and ending temperatures. First we define the function
UMaxW (0, t1, T0, T1)(t) to be the maximum cumulative work, up to any time t,
achievable for any schedule starting at time 0 with temperature exactly T0 and
ending at time t1 with temperature exactly T1. In [4] it is shown that:

UMaxW (0, t1, T0, T1)(t) =(
1
a

) 1
α

(
T1−T0e

−bt1

e−bt1−e
−bt1α
α−1

) 1
α (

b
α−1

) 1
α−1 (

1− e
−bt
α−1

) (2)

The definition of the function MaxW (0, t1, T0, T1)(t) is identical to the definition
of UMaxW , with the additional constraint that the temperature may never ex-
ceed Tmax. Adding this additional constraint implies that MaxW (0, t1, T0, T1)(t)
≤ UMaxW (0, t1, T0, T1)(t), with equality holding if and only if the temperature
never exceeds Tmax in the schedule for UMaxW (0, t1, T0, T1)(t). A schedule or
curve is said to be a UMaxW curve if it is equal to UMaxW (0, t1, T0, T1)(t) for
some choice of parameters. A MaxW curve/schedule is similarly defined. We are
only concerned with MaxW curves that are either UMaxW curves that don’t
exceed Tmax or MaxW curves that end at temperature Tmax. It is shown in [4]
that these type of MaxW curves have the form:

MaxW (0, t1, T0, Tmax)(t) ={
UMaxW (0, γ, T0, Tmax)(t) : t ∈ [0, γ)
UMaxW (0, γ, T0, Tmax)(γ) + (bTmax)

1
α (t− γ) : t ∈ (γ, t1]

(3)

Here γ is the largest value of t1 for which the curve UMaxW (0, t1, T0, Tmax)(t)
does not exceed temperature Tmax. It is show in [4] that γ is implicitly defined
by the following equation:

1
α− 1

T0e
−bγα
α−1 + Tmax −

α

α− 1
Tmaxe

−bγ
α−1 = 0 (4)

2.1 Known Maximum Temperature

In this subsection we assume the thermal threshold of the device Tmax is known
to the algorithm, and consider batched jobs. If there is a feasible schedule, our
algorithm iteratively constructs schedules Si satisfying the following invariant:

Definition 1. Max-Work Invariant: Si completes the maximum work possi-
ble subject to:

– For all times t ∈ [0, dn], the temperature of Si does not exceed Tmax

– W (Si, dj) ≥ wj for all 1 ≤ j ≤ i

By definition, the schedule S0 is defined by MaxW (0, dn, 0, Tmax)(t). The inter-
mediate schedules Si may be infeasible because they may miss deadlines after di,
but Sn is a feasible schedule and for any feasible input an Si exists for all i. The
only reason why the schedule Si−1 cannot be used for Si is that Si−1 may violate

the ith work constraint, that is W (Si−1, di) < wi. Consider the constraints such
that for any j < i, W (Si−1, dj) = wj . We call these tight constraints in Si−1.
Now consider the set of possible schedules Si,j , such that j is a tight constraint
in Si−1, where intuitively during the time period [dj , di], Si,j speeds up to finish
enough work so that the ith work constraint is satisfied and the temperature at
time di is minimized. Defining the temperature of any schedule Si−1 at deadline
dj as T i−1

j , we formally define Si,j :

Definition 2. For tight constraint j < i in Si−1,

Si,j =

Si−1 : t ∈ [0, dj)
UMaxW (0, di − dj , T i−1

j , T i,ji)(t) : t ∈ (dj , di)
MaxW (0, (dn − di), T i,ji , Tmax)(t) : t ∈ (dj , dn]

where T i,ji is the solution of UMaxW (0, di− dj , T i−1
j , T i,ji)(di− dj) = (wi−wj)

We show that if Si exists, then it is one of the Si,j schedules. In particular, Si
will be equal to the first schedule Si,j (ordered by increasing j) that satisfies the
first i work constraints and the temperature constraint.

Algorithm Description: At a high level the algorithm is two nested loops,
where the outer loop iterates over i, and preserves the max-work invariant. If
the ith work constraint is not violated in Si−1, then Si is set to Si−1. Otherwise,
for all tight constraints j in Si−1, Si is set to the first Si,j that satisfies the first
i work constraints and the temperature constraint. If such a Si,j doesn’t exist,
then the instance is declared to be infeasible. The following lemma establishes
the correctness of this algorithm.

Lemma 1. Assume a feasible schedule exists for the instance in question. If
Si−1 is infeasible for constraint i, then Si is equal to Si,j, where j is minimized
subject to the constraint that Si,j satisfies the first i work constraints and the
temperature constraint.

2.2 Unknown Maximum Temperature

In this section we again consider batched jobs, and consider the objective of
minimizing the maximum temperature ever reached in a feasible schedule. Let
Opt be the optimal schedule, and Tmax be the optimum objective value. We
know from the previous section that the optimum schedule can be described
by the concatenation of UMaxW curves C1, . . . , Ck−1, possibly with a single
MaxW curve, Ck, concatenated after Ck−1. Each Ci begins at the time of the
(i − 1)st tight work constraint and end at the time of the ith tight work con-
straint. Our algorithm will iteratively compute Ci. That is, on the ith iteration,
Ci will be computed from the input instance and C1, . . . , Ci−1. In fact, it is
sufficient to describe how to compute C1, as the remaining Ci can be computed
recursively. Alternatively, it is sufficient to show how to compute the first tight
work constraint in Opt.

To compute C1, we need to classify work constraints. We say that the ith

work constraint is a UMaxW constraint if the single cumulative work curve that
exactly satisfies the constraint with the smallest maximum temperature possible
corresponds to equation (2). Alternatively, we say that the ith work constraint
is a MaxW constraint if the single cumulative work curve that exactly satisfies
the constraint with the smallest maximum temperature possible corresponds to
equation (3). We know from the results in the last section every work constraint
must either be a MaxW constraint or a UMaxW constraint. In Lemma 2 we
show that it can be determined in O(1) time whether a particular work constraint
is a UMaxU constraint or a MaxW constraint. In Lemma 3 we show how to
narrow the candidates for UMaxW constraints that give rise to C1 down to one.
The remaining constraint is referred to as the UMaxW-winner. In Lemma 5 we
show how to determine if the UMaxW -winner candidate is a better option for
C1 than any of the MaxW candidates. If this is not the case, we show in Lemma
6 how to compute the best MaxW candidate.

Lemma 2. Given a work constraint W (S, di) ≥ wi, it can be determined in
O(1) time whether it is a UMaxW constraint or a MaxW constraint.

Proof. For initial temperature T0, we solve UMaxW (0, di, T0, Ti)(di) = wi for Ti
as in the known Tmax case. Now we consider equation (4) for γ with Tmax = Ti:

1
α− 1

T0e
−bγα
α−1 + Ti −

α

α− 1
Tie

−bγ
α−1 = 0

If we plug in di for γ and we get a value larger than 0 then γ < di and thus
the curve UMaxW (0, di, T0, Ti)(t) must exceed Ti during some time t < di, thus
the constraint is a MaxW constraint. If the value is smaller than 0 then γ > di,
the curve UMaxW (0, di, T0, Ti)(t) never exceeds Ti, and thus the constraint is
a UMaxW constraint. ut

Lemma 3. All of the UMaxW constraints, but one, can be disqualified as a
candidate for C1 in time O(n).

Proof. Consider any two UMaxW constraints, i and j with i < j. We want
to show that the two work curves exactly satisfying constraints i and j must
be non-intersecting, except at time 0, and that we can determine which work
curve is larger in constant time. This together with Lemma 2 would imply we
can get rid of all UMaxW constraints but one in time O(n) for n constraints.
For initial temperature T0, can we can fully specify the two curves by solving
UMaxW (0, di, T0, Ti)(di) = wi and UMaxW (0, dj , T0, Tj)(dj) = wj for Ti and
Tj respectively. We can then compare them at all times prior to di using equa-
tion (2), i.e., UMaxW (0, di, T0, Ti)(t) and UMaxW (0, dj , T0, Tj)(t).

Note that for any two UMaxW curves defined by equation (2), a comparison
results in the time dependent terms (t-dependent) canceling and thus one curve
is greater than the other at all points in time up to di. Regardless of whether the
larger work curve corresponds to constraint i or j, clearly the smaller work curve
cannot correspond to the first tight constraint as the larger work curve implies

a more efficient way to satisfy both constraints. To actually determine which
curve is greater, we can simply plug in the values for the equations and check
the values of the non-time dependent terms. The larger term must correspond
to the dominating work curve. ut

In order to compare the UMaxW -winner’s curve to the MaxW curves, we
may need to extend the UMaxW -winner’s curve into what we call a UMaxW -
extended curve. A UMaxW -extended curve is a MaxW curve, describable by
equation (3), that runs identical to the UMaxW constraint’s curve on the
UMaxW interval, and is defined on the interval [0, dn]. We now show how to
find this MaxW curve for any UMaxW constraint.

Lemma 4. Any UMaxW constraint’s UMaxW-Extended curve can be described
by equation (3) and can be computed in O(1) time.

Proof. For any UMaxW curve satisfying a UMaxW constraint, the correspond-
ing speed function is defined for all times t ≥ 0 as follows:

S(t) =
b

(α− 1)

1
α

(
Ti − T0e

−bdi

e−bdi − e
−bdiα
α−1

) 1
α

e
−bt
α−1

Thus we can continue running according to this speed curve after di. As the speed
is a constantly decreasing function of time, eventually the temperature will stop
increasing at some specific point in time. This is essentially the definition of γ and
for any fixed γ there exists a Tmax satisfying it which can be found by solving
for Tmax in the γ equation. To actually find the time when the temperature
stops increasing, we can binary search over the possible values of γ, namely the
interval (di, α−1

b ln α
α−1]. For each time we can directly solve for the maximum

temperature using the γ equation and thus the entire UMaxW curve is defined.
We then check the total work accomplished at di. If the total work is less than
wi, then γ is too small, if larger, then γ is too large. Our binary search is over a
constant-sized interval and each curve construction and work comparison takes
constant time, thus the entire process takes O(1) time. Once we have γ and the
maximum temperature, call it Tγ , we can define the entire extended curve as
UMaxW (0, γ, T0, Tγ)(t) for 0 ≤ t < γ and (bTγ)1/αt for t ≥ γ, in other words,
MaxW (0,∞, T0, Tγ)(t) with Tmax = Tγ . ut

Lemma 5. Any MaxW constraint satisfied by a UMaxW-Extended curve can’t
correspond to C1. If any MaxW constraint is not satisfied by a UMaxW-Extended
curve then the UMaxW constraint can’t correspond to C1.

Proof. To satisfy the winning UMaxW constraint exactly, we run according to
the UMaxW -extended curve corresponding to the UMaxW constraint’s exact
work curve. Thus if a MaxW constraint is satisfied by the entire extended curve,
then to satisfy the UMaxW constraint and satisfy the MaxW constraint it is
most temperature efficient to first exactly satisfy the UMaxW constraint then
the MaxW constraint (if it is not already satisfied). On the other hand, if some
MaxW constraint is not satisfied then it is more efficient to exactly satisfy that
constraint, necessarily satisfying the UMaxW constraint as well. ut

Lemma 6. If all UMaxW constraints have been ruled out for C1, then C1, and
the entire schedule, can be determined in time O(n).

Proof. To find the first tight constraint, we can simply create the MaxW curves
exactly satisfying each constraint. For each constraint, we can essentially use the
the same method as in Lemma 4 for extending the UMaxW winner to create
the MaxW curve. The difference here is that we must also add the work of the
constant speed portion to the work of the UMaxW portion to check the total
work at the constraint’s deadline. However this does not increase the construction
time, hence each curve still takes O(1) time per constraint.

Once we have constructed the curves, we can then compare any two at the
deadline of the earlier constraint. The last remaining work curve identifies the
first tight constraint and because we have the MaxW curve that exactly satisfies
it, we have specified the entire optimal scheduling, including the minimum Tmax

possible for any feasible schedule. As we can have at most n MaxW constraints
and construction and comparison take constant time, our total time is O(n). ut

Theorem 1. The optimal schedule can be constructed in time O(n2) when Tmax

is not known.

Proof. The theorem follows from using Lemma 3 which allows us to produce a
valid MaxW curve by Lemma 4. We then apply Lemma 5 by comparing the
UMaxW -winner’s work at each MaxW constraint. If all MaxW constraints are
disqualified, we’ve found the first tight constraint, else we apply Lemma 6 to
specify the entire schedule. In either case, we’ve defined the schedule up to at
least one constraint in O(n) time. ut

3 Online Algorithm

Our goal in this section is to describe an online algorithm A, and analyze its
competitiveness. Note that all proofs in this section have been omitted due to
space limitations but can be found in the full paper.

Algorithm Description: A runs at a constant speed of (`bTmax)1/α until it de-
termines that some job will miss its deadline. Here, ` = (2−(α− 1) ln(α

(α−1)))α ≤
2. At this point A runs according to the online algorithm OA. When enough work
is finished such that running at constant speed (`bTmax)1/α will not cause any
job to miss its deadline, A then switches back to running at the constant speed.

Before beginning, we briefly note some characteristics of the energy optimal
algorithm, YDS, as well as some characteristics of the online algorithm OA. We
require one main property from YDS, a slight variation on Claim 2.3 in [4]:

Claim 1. For any speed s, consider any interval, [t1, t2] of maximal time such
that YDS runs at speed strictly greater than s. YDS schedules within [t1, t2],
exactly those jobs that are released no earlier than t1 and due no later than t2.

We also need that YDS is energy optimal within these maximal intervals.
This is a direct consequence of the total energy optimality of YDS. Lastly note
that YDS schedules jobs according to EDF. For more on YDS, see [2] and [4].

For the online algorithm OA, we need only that it always runs, at any time
t, at the minimum feasible constant speed for the amount of unfinished work at
time t and that it has a competitive ratio of αα for total energy [4].

We will first bound the maximum amount of work that the optimal tem-
perature algorithm can perform during intervals longer than the inverse of the
cooling parameter b. This is the basis for showing that the constant speed of A
is sufficient for all but intervals of smaller than 1/b.

Lemma 7. For any interval of length t > 1/b, the optimal temperature algo-
rithm completes strictly less than (`bTmax)1/α · (t) work.

We now know that if all jobs have a lifetime of at least 1/b, A will always run
at a constant speed and be feasible, thus we have essentially handled the compet-
itiveness of A in non-emergency periods. Now we need to consider A’s competi-
tiveness during the emergency periods, i.e., when running at speed (`bTmax)1/α

would cause A to miss a deadline. To do this, we will show that these emergency
periods are contained within periods of time where YDS runs faster than A’s
constant speed and that during these larger periods we can directly compare A
to YDS via OA. We start by bounding the maximal length of time in which YDS
can run faster than A’s constant speed.

Lemma 8. Any maximal time period where YDS runs at a speed strictly greater
than (`bTmax)1/α has length < 1/b.

We call these maximal periods in YDS fast periods as they are characterized
by the fact that YDS is running strictly faster than (`bTmax)1/α. Now we show
that A will never be behind YDS on any individual job outside of fast periods.
This then allows us to describe A during fast periods.

Lemma 9. At the beginning and ending of every fast period, A has completed
as much work as the YDS schedule on each individual job.

Lemma 10. A switches to OA only during fast periods.

We are now ready to upper bound the energy usage of A, first in a fast period,
and then in an interval of length 1/b. We then use this energy bound to upper
bound the temperature of A. We use a variation on Theorem 2.2 in [4] to relate
energy to temperature. We denote the maximum energy used by an algorithm,
ALG, in any interval of length 1/b, on input I, as C[ALG(I)] or simply C[ALG]
when I is implicit. Note that this is a different interval size than used in [4]. We
similarly denote the maximum temperature of ALG as T [ALG(I)] or T [ALG].

Lemma 11. For any schedule S, and for any cooling parameter b ≥ 0,

aC[S]
e
≤ T [S] ≤ e

e− 1
aC[S]

Lemma 12. A is αα-competitive for energy in any single maximal fast period.

Lemma 13. A uses at most (`+ 3eαα)Tmax energy in an interval of size 1/b.

Theorem 2. A is (e
e−1 (`+ 3eαα))-competitive for temperature.

4 Additional Results

Theorem 3. Using the technique from the previous section, it can be shown
that the energy optimal offline algorithm, YDS, is e

e−1 (` + 3e)-competitive for
temperature, where 15.5 < e

e−1 (`+ 3e) < 16.1.

References

1. Snowdon, D.C., Ruocco, S., Heiser, G.: Power management and dynamic voltage
scaling: Myths and facts. In: Proceedings of the 2005 Workshop on Power Aware
Real-time Computing, New Jersey, USA (2005)

2. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In:
FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, Washington, DC, USA, IEEE Computer Society (1995) 374

3. Albers, S.: Algorithms for energy saving. In Albers, S., Alt, H., Nher, S., eds.:
Efficient Algorithms. Volume 5760 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2009) 173–186

4. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-
ture. J. ACM 54 (2007) 1–39

5. Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu,
A., Wellman, J.D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchi-
tecture: Design and modeling challenges for next-generation microprocessors. IEEE
Micro 20 (2000) 26–44

6. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for
variable voltage processors. Proceedings of the National Academy of Sciences of the
United States of America 103 (2006) 3983–3987

7. Bansal, N., Bunde, D.P., Chan, H.L., Pruhs, K.: Average rate speed scaling. In:
LATIN’08: Proceedings of the 8th Latin American conference on Theoretical infor-
matics, Berlin, Heidelberg, Springer-Verlag (2008) 240–251

8. Bansal, N., Chan, H.L., Pruhs, K., Katz, D.: Improved bounds for speed scaling in
devices obeying the cube-root rule. In: ICALP ’09: Proceedings of the 36th Interna-
tional Colloquium on Automata, Languages and Programming, Berlin, Heidelberg,
Springer-Verlag (2009) 144–155

9. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for temperature-aware
task scheduling in microprocessor systems. In: AAIM ’08: Proceedings of the 4th
international conference on Algorithmic Aspects in Information and Management,
Berlin, Heidelberg, Springer-Verlag (2008) 120–130

10. Albers, S.: Energy-efficient algorithms. Commun. ACM 53 (2010) 86–96
11. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. SIGACT

News 36 (2005) 63–76
12. Rao, R., Vrudhula, S.: Performance Optimal Processor Throttling Under Thermal

Constraints. In: CASES ’07: Proceedings of the 2007 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, Salzburg, Austria,
(2007) 257–266

